Quantitative Isoperimetric Inequalities on the Real Line

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative Isoperimetric Inequalities in H

In the Heisenberg group H, n ≥ 1, we prove quantitative isoperimetric inequalities for Pansu’s spheres, that are known to be isoperimetric under various assumptions. The inequalities are shown for suitably restricted classes of competing sets and the proof relies on the construction of sub-calibrations.

متن کامل

Hardy-type Inequalities on the Real Line

We prove a certain type of inequalities concerning the integral of the Fourier transform of a function integrable on the real line.

متن کامل

Quantitative isoperimetric inequalities for a class of nonconvex sets

Quantitative versions (i.e., taking into account a suitable “distance” of a set from being a sphere) of the isoperimetric inequality are obtained, in the spirit of [17, 18], for a class of not necessarily convex sets called φ-convex sets. Our work is based on geometrical results on φ-convex sets, obtained using methods of both nonsmooth analysis and geometric measure theory.

متن کامل

A Mass Transportation Approach to Quantitative Isoperimetric Inequalities

A sharp quantitative version of the anisotropic isoperimetric inequality is established, corresponding to a stability estimate for the Wulff shape of a given surface tension energy. This is achieved by exploiting mass transportation theory, especially Gromov’s proof of the isoperimetric inequality and the Brenier-McCann Theorem. A sharp quantitative version of the Brunn-Minkowski inequality for...

متن کامل

Lp AFFINE ISOPERIMETRIC INEQUALITIES

Affine isoperimetric inequalities compare functionals, associated with convex (or more general) bodies, whose ratios are invariant under GL(n)-transformations of the bodies. These isoperimetric inequalities are more powerful than their better-known relatives of a Euclidean flavor. To be a bit more specific, this article deals with inequalities for centroid and projection bodies. Centroid bodies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales mathématiques Blaise Pascal

سال: 2011

ISSN: 1259-1734,2118-7436

DOI: 10.5802/ambp.299